第133章 深探等差数列

文曲在古 戴建文 1725 字 2个月前

这个问题让学子们感到有些棘手,但他们并没有退缩,而是相互讨论,尝试着寻找解题的方法。

过了许久,一位学子说道:“先生,我设这三项分别为 a - d ,a ,a + d ,然后根据已知条件列出方程组,可以求出 a 和 d ,进而得到通项公式。”

戴浩文说道:“那你来具体解一下这个方程组。”

学子在黑板上写道:“(a - d) + a + (a + d) = 12 , (a - d)2 + a2 + (a + d)2 = 40 。 解第一个方程得 3a = 12 ,a = 4 。将 a = 4 代入第二个方程得 (4 - d)2 + 16 + (4 + d)2 = 40 ,化简得到 16 - 8d + d2 + 16 + 16 + 8d + d2 = 40 , 2d2 = 40 - 48 , 2d2 = -8 ,d2 = -4 (舍去)或者 d = 2 ,d = -2 。所以当 d = 2 时,通项公式为 an = 2 + 2(n - 1) = 2n ;当 d = -2 时,通项公式为 an = 8 - 2(n - 1) = 10 - 2n 。”

本小章还未完,请点击下一页继续阅读后面精彩内容!

戴浩文说道:“解得很好。那我们再来看一个更复杂的问题。已知一个等差数列的前 n 项和为 Sn ,且满足 Sn / n 是一个等差数列,求这个原数列的通项公式。”

学子们再次陷入沉思,这次讨论的时间更长了。

终于,一位学子说道:“先生,我觉得可以先设 Sn / n 的通项公式,然后通过 Sn - Sn - 1 求出原数列的通项公式。”

戴浩文说道:“不错,那你来试试看。”

学子开始推导:“设 Sn / n = bn ,则 bn = b1 + (n - 1)c ,Sn = n(b1 + (n - 1)c) ,当 n ≥ 2 时,an = Sn - Sn - 1 = n(b1 + (n - 1)c) - (n - 1)(b1 + (n - 2)c) ,化简后得到 an = b1 + (2n - 2)c - (n - 1)c = b1 + (n - 1)c ,当 n = 1 时,a1 = S1 = b1 ,所以 an = b1 + (n - 1)c 。”

戴浩文说道:“非常好。通过这些问题,大家对等差数列的理解是不是更加深入了?”

学子们纷纷点头。

就在这时,一位权贵子弟说道:“先生,这些知识虽然有趣,但于我今后仕途,究竟有何实际用处?”

戴浩文正色道:“莫要轻视这知识。为官者,需明算账、善规划。比如在税收分配、资源调度等方面,若能运用等差数列的知识,便能做到合理安排,使百姓受益。”

那权贵子弟听后,若有所思地点了点头。

戴浩文继续说道:“再如,在军事布阵中,士兵的排列亦可看作等差数列,知晓其规律,便能更好地指挥作战。”

学子们恍然大悟,对等差数列的实用性有了更深刻的认识。

此后的日子里,戴浩文不断地抛出各种复杂的等差数列问题,引导学子们思考和探索。

有一天,一位学子问道:“先生,如何判断一个数列是否为等差数列呢?”

戴浩文回答道:“可以通过定义,即后一项与前一项的差是否为常数。也可以通过等差中项的性质,若 2b = a + c ,则 a ,b ,c 成等差数列。”